Amazon reviews classification [scikit-learn]ยถ
Giskard is an open-source framework for testing all ML models, from LLMs to tabular models. Donโt hesitate to give the project a star on GitHub โญ๏ธ if you find it useful!
In this notebook, youโll learn how to create comprehensive test suites for your model in a few lines of code, thanks to Giskardโs open-source Python library.
Use-case:
Binary classification of productโs review โhelpfulnessโ (quality).
Outline:
Detect vulnerabilities automatically with Giskardโs scan
Automatically generate & curate a comprehensive test suite to test your model beyond accuracy-related metrics
Install dependenciesยถ
Make sure to install the giskard
[ ]:
%pip install giskard --upgrade
Import librariesยถ
[1]:
import string
from pathlib import Path
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score, balanced_accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer
from giskard import Dataset, Model, scan, testing
Notebook-level settingsยถ
[2]:
# Disable chained assignment warning.
pd.options.mode.chained_assignment = None
Define constantsยถ
[3]:
# Constants.
RANDOM_SEED = 0
TEST_RATIO = 0.2
TARGET_THRESHOLD = 0.5
TARGET_NAME = "isHelpful"
# Paths.
DATA_URL = "ftp://sys.giskard.ai/pub/unit_test_resources/amazon_review_dataset/reviews.json"
DATA_PATH = Path.home() / ".giskard" / "amazon_review_dataset" / "reviews.json"
Dataset preparationยถ
Load and preprocess dataยถ
[4]:
def fetch_from_ftp(url: str, file: Path) -> None:
"""Helper to fetch data from the FTP server."""
if not file.parent.exists():
file.parent.mkdir(parents=True, exist_ok=True)
if not file.exists():
print(f"Downloading data from {url}")
urlretrieve(url, file)
print(f"Data was loaded!")
def download_data(**kwargs) -> pd.DataFrame:
"""Download the dataset using URL."""
fetch_from_ftp(DATA_URL, DATA_PATH)
_df = pd.read_json(DATA_PATH, lines=True, **kwargs)
return _df
def preprocess_data(df: pd.DataFrame) -> pd.DataFrame:
"""Perform data-preprocessing steps."""
print(f"Start data preprocessing...")
# Select columns.
df = df[["reviewText", "helpful"]]
# Remove Null-characters (x00) from the dataset.
df.reviewText = df.reviewText.apply(lambda x: x.replace("\x00", ""))
# Extract numbers of helpful and total votes.
df['helpful_ratings'] = df.helpful.apply(lambda x: x[0])
df['total_ratings'] = df.helpful.apply(lambda x: x[1])
# Filter unreasonable comments.
df = df[df.total_ratings > 10]
# Create target column.
df[TARGET_NAME] = np.where((df.helpful_ratings / df.total_ratings) > TARGET_THRESHOLD, 1, 0).astype(int)
# Delete columns we don't need anymore.
df.drop(columns=["helpful", 'helpful_ratings', 'total_ratings'], inplace=True)
print("Data preprocessing finished!")
return df
[ ]:
reviews_df = download_data()
reviews_df = preprocess_data(reviews_df)
Train-test splitยถ
[6]:
X_train, X_test, y_train, y_test = train_test_split(reviews_df[["reviewText"]], reviews_df[TARGET_NAME],
test_size=TEST_RATIO, random_state=RANDOM_SEED,
stratify=reviews_df[TARGET_NAME])
Wrap dataset with Giskardยถ
To prepare for the vulnerability scan, make sure to wrap your dataset using Giskardโs Dataset class. More details here.
[ ]:
raw_data = pd.concat([X_test, y_test], axis=1)
giskard_dataset = Dataset(
df=raw_data,
# A pandas.DataFrame that contains the raw data (before all the pre-processing steps) and the actual ground truth variable (target).
target=TARGET_NAME, # Ground truth variable.
name="reviews", # Optional.
)
Model buildingยถ
Define preprocessing pipelineยถ
[8]:
def remove_punctuation(x):
"""Remove punctuation from input string."""
x = x.reviewText.apply(lambda row: row.translate(str.maketrans('', '', string.punctuation)))
return x
preprocessor = Pipeline(steps=[
("punctuation", FunctionTransformer(remove_punctuation)),
("vectorizer", TfidfVectorizer(stop_words='english', min_df=0.01))
])
Build estimatorยถ
[ ]:
pipeline = Pipeline(steps=[
("preprocessor", preprocessor),
("estimator", LogisticRegression(random_state=RANDOM_SEED, class_weight="balanced"))
])
pipeline.fit(X_train, y_train)
# ROC-AUC score.
train_metric = roc_auc_score(y_train, pipeline.predict_proba(X_train)[:, 1])
test_metric = roc_auc_score(y_test, pipeline.predict_proba(X_test)[:, 1])
print(f"Train ROC-AUC score: {train_metric:.2f}")
print(f"Test ROC-AUC score: {test_metric:.2f}")
# Balanced accuracy to account for imbalanced targets.
b_acc_train = balanced_accuracy_score(y_train, pipeline.predict(X_train))
b_acc_test = balanced_accuracy_score(y_test, pipeline.predict(X_test))
print(f"Train balanced accuracy: {b_acc_train:.2f}")
print(f"Test balanced accuracy: {b_acc_test:.2f}")
Wrap model with Giskardยถ
To prepare for the vulnerability scan, make sure to wrap your model using Giskardโs Model class. You can choose to either wrap the prediction function (preferred option) or the model object. More details here.
[ ]:
# Wrap prediction function
def prediction_function(df):
return pipeline.predict_proba(df)
giskard_model = Model(
model=prediction_function,
# A prediction function that encapsulates all the data pre-processing steps and that could be executed with the dataset used by the scan.
model_type="classification", # Either regression, classification or text_generation.
name="review_helpfulness_predictor", # Optional.
classification_labels=[0, 1], # Their order MUST be identical to the prediction_function's output order.
feature_names=["reviewText"], # Default: all columns of your dataset.
)
# Validate wrapped model.
wrapped_predict = giskard_model.predict(giskard_dataset).raw[:, 1]
wrapped_test_metric = roc_auc_score(y_test, wrapped_predict)
print(f"Wrapped Test ROC-AUC score: {wrapped_test_metric:.2f}")
Detect vulnerabilities in your modelยถ
Scan your model for vulnerabilities with Giskardยถ
Giskardโs scan allows you to detect vulnerabilities in your model automatically. These include performance biases, unrobustness, data leakage, stochasticity, underconfidence, ethical issues, and more. For detailed information about the scan feature, please refer to our scan documentation.
[ ]:
results = scan(giskard_model, giskard_dataset)
[12]:
display(results)
Generate comprehensive test suites automatically for your modelยถ
Generate test suites from the scanยถ
The objects produced by the scan can be used as fixtures to generate a test suite that integrate all detected vulnerabilities. Test suites allow you to evaluate and validate your modelโs performance, ensuring that it behaves as expected on a set of predefined test cases, and to identify any regressions or issues that might arise during development or updates.
[13]:
test_suite = results.generate_test_suite("My first test suite")
test_suite.run()
2024-05-29 11:31:46,497 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:46,501 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (9587, 2) executed in 0:00:00.015202
2024-05-29 11:31:47,278 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,490 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (9587, 2) executed in 0:00:00.246625
2024-05-29 11:31:47,499 pid:47376 MainThread giskard.utils.logging_utils INFO Perturb and predict data executed in 0:00:01.872730
2024-05-29 11:31:47,500 pid:47376 MainThread giskard.utils.logging_utils INFO Compare and predict the data executed in 0:00:00.000723
Executed 'Invariance to โAdd typosโ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'transformation_function': <giskard.scanner.robustness.text_transformations.TextTypoTransformation object at 0x163469e70>, 'threshold': 0.95, 'output_sensitivity': 0.05}:
Test failed
Metric: 0.9
- [INFO] 9515 rows were perturbed
2024-05-29 11:31:47,559 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,560 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (1554, 2) executed in 0:00:00.013542
Executed 'Overconfidence on data slice โ`reviewText` contains "don"โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x339cea860>, 'threshold': 0.20769479469770452, 'p_threshold': 0.5}:
Test failed
Metric: 0.27
2024-05-29 11:31:47,582 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,584 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (4436, 2) executed in 0:00:00.016746
Executed 'Overconfidence on data slice โ`text_length(reviewText)` < 174.500โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.text_slicer.MetadataSliceFunction object at 0x3a11fe1d0>, 'threshold': 0.20769479469770452, 'p_threshold': 0.5}:
Test failed
Metric: 0.21
2024-05-29 11:31:47,641 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,642 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (734, 2) executed in 0:00:00.008658
Executed 'Underconfidence on data slice โ`reviewText` contains "way"โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x33bcabd60>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}:
Test failed
Metric: 0.05
2024-05-29 11:31:47,698 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,699 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (707, 2) executed in 0:00:00.008718
Executed 'Underconfidence on data slice โ`reviewText` contains "better"โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x33b84efe0>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}:
Test failed
Metric: 0.04
2024-05-29 11:31:47,756 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,757 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (849, 2) executed in 0:00:00.009271
Executed 'Underconfidence on data slice โ`reviewText` contains "want"โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x3380c1ea0>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}:
Test failed
Metric: 0.04
2024-05-29 11:31:47,813 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,814 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (733, 2) executed in 0:00:00.007101
Executed 'Underconfidence on data slice โ`reviewText` contains "got"โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x3aaa19ed0>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}:
Test failed
Metric: 0.04
2024-05-29 11:31:47,868 pid:47376 MainThread giskard.datasets.base INFO Casting dataframe columns from {'reviewText': 'object'} to {'reviewText': 'object'}
2024-05-29 11:31:47,869 pid:47376 MainThread giskard.utils.logging_utils INFO Predicted dataset with shape (538, 2) executed in 0:00:00.006875
Executed 'Recall on data slice โ`reviewText` contains "download"โ' with arguments {'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x339c7beb0>, 'threshold': 0.6419472738166567}:
Test failed
Metric: 0.59
2024-05-29 11:31:47,872 pid:47376 MainThread giskard.core.suite INFO Executed test suite 'My first test suite'
2024-05-29 11:31:47,873 pid:47376 MainThread giskard.core.suite INFO result: failed
2024-05-29 11:31:47,873 pid:47376 MainThread giskard.core.suite INFO Invariance to โAdd typosโ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'transformation_function': <giskard.scanner.robustness.text_transformations.TextTypoTransformation object at 0x163469e70>, 'threshold': 0.95, 'output_sensitivity': 0.05}): {failed, metric=0.9038360483447189}
2024-05-29 11:31:47,873 pid:47376 MainThread giskard.core.suite INFO Overconfidence on data slice โ`reviewText` contains "don"โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x339cea860>, 'threshold': 0.20769479469770452, 'p_threshold': 0.5}): {failed, metric=0.26622296173044924}
2024-05-29 11:31:47,873 pid:47376 MainThread giskard.core.suite INFO Overconfidence on data slice โ`text_length(reviewText)` < 174.500โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.text_slicer.MetadataSliceFunction object at 0x3a11fe1d0>, 'threshold': 0.20769479469770452, 'p_threshold': 0.5}): {failed, metric=0.21353196772191185}
2024-05-29 11:31:47,874 pid:47376 MainThread giskard.core.suite INFO Underconfidence on data slice โ`reviewText` contains "way"โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x33bcabd60>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}): {failed, metric=0.04904632152588556}
2024-05-29 11:31:47,874 pid:47376 MainThread giskard.core.suite INFO Underconfidence on data slice โ`reviewText` contains "better"โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x33b84efe0>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}): {failed, metric=0.042432814710042434}
2024-05-29 11:31:47,874 pid:47376 MainThread giskard.core.suite INFO Underconfidence on data slice โ`reviewText` contains "want"โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x3380c1ea0>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}): {failed, metric=0.04240282685512368}
2024-05-29 11:31:47,874 pid:47376 MainThread giskard.core.suite INFO Underconfidence on data slice โ`reviewText` contains "got"โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x3aaa19ed0>, 'threshold': 0.03912589965578388, 'p_threshold': 0.95}): {failed, metric=0.03956343792633015}
2024-05-29 11:31:47,875 pid:47376 MainThread giskard.core.suite INFO Recall on data slice โ`reviewText` contains "download"โ ({'model': <giskard.models.function.PredictionFunctionModel object at 0x107c5e110>, 'dataset': <giskard.datasets.base.Dataset object at 0x1634696c0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x339c7beb0>, 'threshold': 0.6419472738166567}): {failed, metric=0.5929203539823009}
[13]:
Customize your suite by loading objects from the Giskard catalogยถ
The Giskard open source catalog will enable to load:
Tests such as metamorphic, performance, prediction & data drift, statistical tests, etc
Slicing functions such as detectors of toxicity, hate, emotion, etc
Transformation functions such as generators of typos, paraphrase, style tune, etc
To create custom tests, refer to this page.
For demo purposes, we will load a simple unit test (test_f1) that checks if the test F1 score is above the given threshold. For more examples of tests and functions, refer to the Giskard catalog.
[ ]:
test_suite.add_test(testing.test_f1(model=giskard_model, dataset=giskard_dataset, threshold=0.7)).run()