Open In Colab View Notebook on GitHub

Customer churn prediction [LGBM]ΒΆ

Giskard is an open-source framework for testing all ML models, from LLMs to tabular models. Don’t hesitate to give the project a star on GitHub ⭐️ if you find it useful!

In this notebook, you’ll learn how to create comprehensive test suites for your model in a few lines of code, thanks to Giskard’s open-source Python library.

Use-case:

  • Binary classification of the customer’s churn.

  • Model: LGBMClassifier

  • Dataset

Outline:

  • Detect vulnerabilities automatically with Giskard’s scan

  • Automatically generate & curate a comprehensive test suite to test your model beyond accuracy-related metrics

Install dependenciesΒΆ

Make sure to install the giskard

[ ]:
%pip install giskard --upgrade

Import librariesΒΆ

[1]:
import pandas as pd
from lightgbm import LGBMClassifier
from sklearn.compose import ColumnTransformer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler

from giskard import Dataset, Model, scan, testing

Define constantsΒΆ

[2]:
# Constants.
RANDOM_SEED = 123

TARGET_COLUMN_NAME = "Churn"

COLUMN_TYPES = {'gender': "category",
                'SeniorCitizen': "category",
                'Partner': "category",
                'Dependents': "category",
                'tenure': "numeric",
                'PhoneService': "category",
                'MultipleLines': "category",
                'InternetService': "category",
                'OnlineSecurity': "category",
                'OnlineBackup': "category",
                'DeviceProtection': "category",
                'TechSupport': "category",
                'StreamingTV': "category",
                'StreamingMovies': "category",
                'Contract': "category",
                'PaperlessBilling': "category",
                'PaymentMethod': "category",
                'MonthlyCharges': "numeric",
                'TotalCharges': "numeric",
                TARGET_COLUMN_NAME: "category"}

FEATURE_TYPES = {i:COLUMN_TYPES[i] for i in COLUMN_TYPES if i != TARGET_COLUMN_NAME}

COLUMNS_TO_SCALE = [key for key in FEATURE_TYPES.keys() if FEATURE_TYPES[key] == "numeric"]
COLUMNS_TO_ENCODE = [key for key in FEATURE_TYPES.keys() if FEATURE_TYPES[key] == "category"]

# Paths.
DATASET_URL = "https://raw.githubusercontent.com/Giskard-AI/examples/main/datasets/WA_Fn-UseC_-Telco-Customer-Churn.csv"

Dataset preparationΒΆ

Load and preprocess dataΒΆ

[3]:
def preprocess(df: pd.DataFrame) -> pd.DataFrame:
    """Perform data-preprocessing steps."""
    df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')
    df = df.dropna()
    df = df.drop(columns='customerID')
    df['PaymentMethod'] = df['PaymentMethod'].str.replace(' (automatic)', '', regex=False)
    return df


churn_df = pd.read_csv(DATASET_URL)
churn_df = preprocess(churn_df)

Train-test splitΒΆ

[4]:
X_train, X_test, Y_train, Y_test = train_test_split(churn_df.drop(columns=TARGET_COLUMN_NAME),
                                                    churn_df[TARGET_COLUMN_NAME],
                                                    random_state=RANDOM_SEED)

Wrap dataset with GiskardΒΆ

To prepare for the vulnerability scan, make sure to wrap your dataset using Giskard’s Dataset class. More details here.

[5]:
raw_data = pd.concat([X_test, Y_test], axis=1)
giskard_dataset = Dataset(
    df=raw_data,   # A pandas.DataFrame that contains the raw data (before all the pre-processing steps) and the actual ground truth variable (target).
    target=TARGET_COLUMN_NAME,  # Ground truth variable
    name="Churn classification dataset",  # Optional
    cat_columns=COLUMNS_TO_ENCODE  # List of categorical columns. Optional, but is a MUST if available. Inferred automatically if not.
)
2024-05-29 11:39:29,918 pid:51250 MainThread giskard.datasets.base INFO     Your 'pandas.DataFrame' is successfully wrapped by Giskard's 'Dataset' wrapper class.

Model buildingΒΆ

Define preprocessing stepsΒΆ

[6]:
preprocessor = ColumnTransformer(transformers=[
    ('num', StandardScaler(), COLUMNS_TO_SCALE),
    ('cat', OneHotEncoder(handle_unknown='ignore',drop='first'), COLUMNS_TO_ENCODE)
])

Build estimatorΒΆ

[ ]:
pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', LGBMClassifier(random_state=RANDOM_SEED))
])

# Fit model.
pipeline.fit(X_train, Y_train)

# Evaluate model.
Y_train_pred = pipeline.predict(X_train)
train_accuracy = accuracy_score(Y_train, Y_train_pred)

Y_test_pred = pipeline.predict(X_test)
test_accuracy = accuracy_score(Y_test, Y_test_pred)

print(f'Train Accuracy: {train_accuracy:.2f}')
print(f'Test Accuracy: {test_accuracy:.2f}')

Wrap model with GiskardΒΆ

To prepare for the vulnerability scan, make sure to wrap your model using Giskard’s Model class. You can choose to either wrap the prediction function (preferred option) or the model object. More details here.

[ ]:
giskard_model = Model(
    model=pipeline,  # A prediction function that encapsulates all the data pre-processing steps and that could be executed with the dataset used by the scan.
    model_type="classification",  # Either regression, classification or text_generation.
    name="Churn classification",  # Optional
    classification_labels=pipeline.classes_,  # Their order MUST be identical to the prediction_function's output order
    feature_names=FEATURE_TYPES.keys(),  # Default: all columns of your dataset
)

# Validate wrapped model.
wrapped_Y_pred = giskard_model.predict(giskard_dataset).prediction
wrapped_accuracy = accuracy_score(Y_test, wrapped_Y_pred)

print(f'Wrapped Test Accuracy: {wrapped_accuracy:.2f}')

Detect vulnerabilities in your modelΒΆ

Scan your model for vulnerabilities with GiskardΒΆ

Giskard’s scan allows you to detect vulnerabilities in your model automatically. These include performance biases, unrobustness, data leakage, stochasticity, underconfidence, ethical issues, and more. For detailed information about the scan feature, please refer to our scan documentation.

[ ]:
results = scan(giskard_model, giskard_dataset)
[10]:
display(results)

Generate comprehensive test suites automatically for your modelΒΆ

Generate test suites from the scanΒΆ

The objects produced by the scan can be used as fixtures to generate a test suite that integrate all detected vulnerabilities. Test suites allow you to evaluate and validate your model’s performance, ensuring that it behaves as expected on a set of predefined test cases, and to identify any regressions or issues that might arise during development or updates.

[11]:
test_suite = results.generate_test_suite("My first test suite")
test_suite.run()
2024-05-29 11:43:15,920 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:15,923 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (506, 20) executed in 0:00:00.018539
Executed 'Overconfidence on data slice β€œ`TotalCharges` >= 3246.925”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c0cc10>, 'threshold': 0.4486033519553073, 'p_threshold': 0.5}:
               Test failed
               Metric: 0.56


2024-05-29 11:43:15,939 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:15,941 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (561, 20) executed in 0:00:00.010149
Executed 'Overconfidence on data slice β€œ`InternetService` == "DSL"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c1f5e0>, 'threshold': 0.4486033519553073, 'p_threshold': 0.5}:
               Test failed
               Metric: 0.51


2024-05-29 11:43:15,956 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:15,958 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (614, 20) executed in 0:00:00.010088
Executed 'Overconfidence on data slice β€œ`OnlineBackup` == "Yes"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c1fee0>, 'threshold': 0.4486033519553073, 'p_threshold': 0.5}:
               Test failed
               Metric: 0.46


2024-05-29 11:43:15,974 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:15,976 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (870, 20) executed in 0:00:00.010450
Executed 'Underconfidence on data slice β€œ`OnlineSecurity` == "No"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x335d02500>, 'threshold': 0.014391353811149032, 'p_threshold': 0.95}:
               Test failed
               Metric: 0.02


2024-05-29 11:43:15,993 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:15,995 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (980, 20) executed in 0:00:00.011023
Executed 'Underconfidence on data slice β€œ`Contract` == "Month-to-month"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c0d9c0>, 'threshold': 0.014391353811149032, 'p_threshold': 0.95}:
               Test failed
               Metric: 0.02


2024-05-29 11:43:16,017 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,021 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (1248, 20) executed in 0:00:00.014565
Executed 'Underconfidence on data slice β€œ`Dependents` == "No"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4e320>, 'threshold': 0.014391353811149032, 'p_threshold': 0.95}:
               Test failed
               Metric: 0.02


2024-05-29 11:43:16,035 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,037 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (376, 20) executed in 0:00:00.009567
Executed 'Recall on data slice β€œ`Contract` == "One year"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c69ba0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.0


2024-05-29 11:43:16,054 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,055 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (497, 20) executed in 0:00:00.008861
Executed 'Recall on data slice β€œ`tenure` >= 44.500 AND `tenure` < 70.500”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334cedab0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.06


2024-05-29 11:43:16,071 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,074 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.009695
Executed 'Recall on data slice β€œ`InternetService` == "No"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4f8e0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,092 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,093 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.008504
Executed 'Recall on data slice β€œ`OnlineSecurity` == "No internet service"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6aa40>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,109 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,111 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.008597
Executed 'Recall on data slice β€œ`OnlineBackup` == "No internet service"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68ee0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,125 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,128 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.008774
Executed 'Recall on data slice β€œ`DeviceProtection` == "No internet service"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6a6e0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,143 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,145 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.008562
Executed 'Recall on data slice β€œ`TechSupport` == "No internet service"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68a90>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,161 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,164 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.010419
Executed 'Recall on data slice β€œ`StreamingTV` == "No internet service"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68850>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,179 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,182 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (405, 20) executed in 0:00:00.010005
Executed 'Recall on data slice β€œ`StreamingMovies` == "No internet service"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68970>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.08


2024-05-29 11:43:16,196 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,198 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (296, 20) executed in 0:00:00.008635
Executed 'Recall on data slice β€œ`MonthlyCharges` < 20.775”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334cee350>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.1


2024-05-29 11:43:16,214 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,216 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (472, 20) executed in 0:00:00.009999
Executed 'Recall on data slice β€œ`TechSupport` == "Yes"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6a590>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.21


2024-05-29 11:43:16,231 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,233 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (483, 20) executed in 0:00:00.009687
Executed 'Recall on data slice β€œ`OnlineSecurity` == "Yes"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68dc0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.21


2024-05-29 11:43:16,256 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,268 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (368, 20) executed in 0:00:00.025869
Executed 'Recall on data slice β€œ`PaymentMethod` == "Credit card"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6ab30>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.28


2024-05-29 11:43:16,297 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,305 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (561, 20) executed in 0:00:00.017681
Executed 'Recall on data slice β€œ`InternetService` == "DSL"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4d4b0>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.32


2024-05-29 11:43:16,332 pid:51250 MainThread giskard.datasets.base INFO     Casting dataframe columns from {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'} to {'gender': 'object', 'SeniorCitizen': 'int64', 'Partner': 'object', 'Dependents': 'object', 'tenure': 'int64', 'PhoneService': 'object', 'MultipleLines': 'object', 'InternetService': 'object', 'OnlineSecurity': 'object', 'OnlineBackup': 'object', 'DeviceProtection': 'object', 'TechSupport': 'object', 'StreamingTV': 'object', 'StreamingMovies': 'object', 'Contract': 'object', 'PaperlessBilling': 'object', 'PaymentMethod': 'object', 'MonthlyCharges': 'float64', 'TotalCharges': 'float64'}
2024-05-29 11:43:16,340 pid:51250 MainThread giskard.utils.logging_utils INFO     Predicted dataset with shape (510, 20) executed in 0:00:00.020697
Executed 'Recall on data slice β€œ`Dependents` == "Yes"”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4d870>, 'threshold': 0.49131679389312977}:
               Test failed
               Metric: 0.33


2024-05-29 11:43:16,348 pid:51250 MainThread giskard.core.suite INFO     Executed test suite 'My first test suite'
2024-05-29 11:43:16,348 pid:51250 MainThread giskard.core.suite INFO     result: failed
2024-05-29 11:43:16,349 pid:51250 MainThread giskard.core.suite INFO     Overconfidence on data slice β€œ`TotalCharges` >= 3246.925” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c0cc10>, 'threshold': 0.4486033519553073, 'p_threshold': 0.5}): {failed, metric=0.5568181818181818}
2024-05-29 11:43:16,349 pid:51250 MainThread giskard.core.suite INFO     Overconfidence on data slice β€œ`InternetService` == "DSL"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c1f5e0>, 'threshold': 0.4486033519553073, 'p_threshold': 0.5}): {failed, metric=0.5053763440860215}
2024-05-29 11:43:16,349 pid:51250 MainThread giskard.core.suite INFO     Overconfidence on data slice β€œ`OnlineBackup` == "Yes"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c1fee0>, 'threshold': 0.4486033519553073, 'p_threshold': 0.5}): {failed, metric=0.45588235294117646}
2024-05-29 11:43:16,349 pid:51250 MainThread giskard.core.suite INFO     Underconfidence on data slice β€œ`OnlineSecurity` == "No"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x335d02500>, 'threshold': 0.014391353811149032, 'p_threshold': 0.95}): {failed, metric=0.02413793103448276}
2024-05-29 11:43:16,350 pid:51250 MainThread giskard.core.suite INFO     Underconfidence on data slice β€œ`Contract` == "Month-to-month"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c0d9c0>, 'threshold': 0.014391353811149032, 'p_threshold': 0.95}): {failed, metric=0.022448979591836733}
2024-05-29 11:43:16,350 pid:51250 MainThread giskard.core.suite INFO     Underconfidence on data slice β€œ`Dependents` == "No"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4e320>, 'threshold': 0.014391353811149032, 'p_threshold': 0.95}): {failed, metric=0.016826923076923076}
2024-05-29 11:43:16,350 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`Contract` == "One year"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c69ba0>, 'threshold': 0.49131679389312977}): {failed, metric=0.0}
2024-05-29 11:43:16,351 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`tenure` >= 44.500 AND `tenure` < 70.500” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334cedab0>, 'threshold': 0.49131679389312977}): {failed, metric=0.05970149253731343}
2024-05-29 11:43:16,351 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`InternetService` == "No"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4f8e0>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,351 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`OnlineSecurity` == "No internet service"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6aa40>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,352 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`OnlineBackup` == "No internet service"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68ee0>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,352 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`DeviceProtection` == "No internet service"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6a6e0>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,352 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`TechSupport` == "No internet service"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68a90>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,353 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`StreamingTV` == "No internet service"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68850>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,353 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`StreamingMovies` == "No internet service"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68970>, 'threshold': 0.49131679389312977}): {failed, metric=0.07692307692307693}
2024-05-29 11:43:16,353 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`MonthlyCharges` < 20.775” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334cee350>, 'threshold': 0.49131679389312977}): {failed, metric=0.10344827586206896}
2024-05-29 11:43:16,353 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`TechSupport` == "Yes"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6a590>, 'threshold': 0.49131679389312977}): {failed, metric=0.2054794520547945}
2024-05-29 11:43:16,353 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`OnlineSecurity` == "Yes"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c68dc0>, 'threshold': 0.49131679389312977}): {failed, metric=0.2125}
2024-05-29 11:43:16,354 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`PaymentMethod` == "Credit card"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c6ab30>, 'threshold': 0.49131679389312977}): {failed, metric=0.2777777777777778}
2024-05-29 11:43:16,354 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`InternetService` == "DSL"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4d4b0>, 'threshold': 0.49131679389312977}): {failed, metric=0.3181818181818182}
2024-05-29 11:43:16,354 pid:51250 MainThread giskard.core.suite INFO     Recall on data slice β€œ`Dependents` == "Yes"” ({'model': <giskard.models.sklearn.SKLearnModel object at 0x16b3e57b0>, 'dataset': <giskard.datasets.base.Dataset object at 0x16b32bbe0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x334c4d870>, 'threshold': 0.49131679389312977}): {failed, metric=0.32558139534883723}
[11]:
close Test suite failed.
Test Overconfidence on data slice β€œ`TotalCharges` >= 3246.925”
Measured Metric = 0.55682 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `TotalCharges` >= 3246.925
threshold 0.4486033519553073
p_threshold 0.5
Test Overconfidence on data slice β€œ`InternetService` == "DSL"”
Measured Metric = 0.50538 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `InternetService` == "DSL"
threshold 0.4486033519553073
p_threshold 0.5
Test Overconfidence on data slice β€œ`OnlineBackup` == "Yes"”
Measured Metric = 0.45588 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `OnlineBackup` == "Yes"
threshold 0.4486033519553073
p_threshold 0.5
Test Underconfidence on data slice β€œ`OnlineSecurity` == "No"”
Measured Metric = 0.02414 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `OnlineSecurity` == "No"
threshold 0.014391353811149032
p_threshold 0.95
Test Underconfidence on data slice β€œ`Contract` == "Month-to-month"”
Measured Metric = 0.02245 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `Contract` == "Month-to-month"
threshold 0.014391353811149032
p_threshold 0.95
Test Underconfidence on data slice β€œ`Dependents` == "No"”
Measured Metric = 0.01683 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `Dependents` == "No"
threshold 0.014391353811149032
p_threshold 0.95
Test Recall on data slice β€œ`Contract` == "One year"”
Measured Metric = 0.0 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `Contract` == "One year"
threshold 0.49131679389312977
Test Recall on data slice β€œ`tenure` >= 44.500 AND `tenure` < 70.500”
Measured Metric = 0.0597 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `tenure` >= 44.500 AND `tenure` < 70.500
threshold 0.49131679389312977
Test Recall on data slice β€œ`InternetService` == "No"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `InternetService` == "No"
threshold 0.49131679389312977
Test Recall on data slice β€œ`OnlineSecurity` == "No internet service"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `OnlineSecurity` == "No internet service"
threshold 0.49131679389312977
Test Recall on data slice β€œ`OnlineBackup` == "No internet service"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `OnlineBackup` == "No internet service"
threshold 0.49131679389312977
Test Recall on data slice β€œ`DeviceProtection` == "No internet service"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `DeviceProtection` == "No internet service"
threshold 0.49131679389312977
Test Recall on data slice β€œ`TechSupport` == "No internet service"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `TechSupport` == "No internet service"
threshold 0.49131679389312977
Test Recall on data slice β€œ`StreamingTV` == "No internet service"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `StreamingTV` == "No internet service"
threshold 0.49131679389312977
Test Recall on data slice β€œ`StreamingMovies` == "No internet service"”
Measured Metric = 0.07692 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `StreamingMovies` == "No internet service"
threshold 0.49131679389312977
Test Recall on data slice β€œ`MonthlyCharges` < 20.775”
Measured Metric = 0.10345 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `MonthlyCharges` < 20.775
threshold 0.49131679389312977
Test Recall on data slice β€œ`TechSupport` == "Yes"”
Measured Metric = 0.20548 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `TechSupport` == "Yes"
threshold 0.49131679389312977
Test Recall on data slice β€œ`OnlineSecurity` == "Yes"”
Measured Metric = 0.2125 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `OnlineSecurity` == "Yes"
threshold 0.49131679389312977
Test Recall on data slice β€œ`PaymentMethod` == "Credit card"”
Measured Metric = 0.27778 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `PaymentMethod` == "Credit card"
threshold 0.49131679389312977
Test Recall on data slice β€œ`InternetService` == "DSL"”
Measured Metric = 0.31818 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `InternetService` == "DSL"
threshold 0.49131679389312977
Test Recall on data slice β€œ`Dependents` == "Yes"”
Measured Metric = 0.32558 close Failed
model Churn classification
dataset Churn classification dataset
slicing_function `Dependents` == "Yes"
threshold 0.49131679389312977
2024-05-29 11:43:16,426 pid:51250 Thread-36 (_track) urllib3.connectionpool WARNING  Connection pool is full, discarding connection: api.mixpanel.com. Connection pool size: 10
2024-05-29 11:43:16,454 pid:51250 Thread-37 (_track) urllib3.connectionpool WARNING  Connection pool is full, discarding connection: api.mixpanel.com. Connection pool size: 10
2024-05-29 11:43:16,485 pid:51250 Thread-38 (_track) urllib3.connectionpool WARNING  Connection pool is full, discarding connection: api.mixpanel.com. Connection pool size: 10

Customize your suite by loading objects from the Giskard catalogΒΆ

The Giskard open source catalog will enable to load:

  • Tests such as metamorphic, performance, prediction & data drift, statistical tests, etc

  • Slicing functions such as detectors of toxicity, hate, emotion, etc

  • Transformation functions such as generators of typos, paraphrase, style tune, etc

To create custom tests, refer to this page.

For demo purposes, we will load a simple unit test (test_f1) that checks if the test F1 score is above the given threshold. For more examples of tests and functions, refer to the Giskard catalog.

[ ]:
test_suite.add_test(testing.test_f1(model=giskard_model, dataset=giskard_dataset, threshold=0.7)).run()