Open In Colab View Notebook on GitHub

Breast cancer detection [XGBoost]

Giskard is an open-source framework for testing all ML models, from LLMs to tabular models. Don’t hesitate to give the project a star on GitHub ⭐️ if you find it useful!

In this notebook, you’ll learn how to create comprehensive test suites for your model in a few lines of code, thanks to Giskard’s open-source Python library.

Use-case:

  • Binary classification. Whether the patient has the breast cancer.

  • Model: XGBClassifier

  • Dataset

Outline:

  • Detect vulnerabilities automatically with Giskard’s scan

  • Automatically generate & curate a comprehensive test suite to test your model beyond accuracy-related metrics

  • Upload your model to the Giskard Hub to:

    • Debug failing tests & diagnose issues

    • Compare models & decide which one to promote

    • Share your results & collect feedback from non-technical team members

Install dependencies

Make sure to install the giskard

[13]:
%pip install giskard --upgrade

Import libraries

[1]:
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier

from giskard import Dataset, Model, scan, testing, Suite, GiskardClient

Define constants

[2]:
# Constants.
TARGET_COLUMN_NAME = "target"

RANDOM_SEED = 42

Dataset preparation

Load data

[3]:
data = load_breast_cancer(as_frame=True)
features = data['data']
target = data[TARGET_COLUMN_NAME]

Train-test split

[4]:
# Train/test split.
X_train, X_test, y_train, y_test = train_test_split(features.loc[:, features.columns != TARGET_COLUMN_NAME], target,
                                                    random_state=RANDOM_SEED)

Wrap dataset with Giskard

To prepare for the vulnerability scan, make sure to wrap your dataset using Giskard’s Dataset class. More details here.

[5]:
raw_data = pd.concat([X_test, y_test], axis=1)
giskard_dataset = Dataset(
    df=raw_data,
    # A pandas.DataFrame that contains the raw data (before all the pre-processing steps) and the actual ground truth variable (target).
    target="target",  # Ground truth variable.
    name="breast_cancer",  # Optional.
)

Model building

Build estimator

[ ]:
xgb = XGBClassifier()
xgb.fit(X_train, y_train)

# Evaluation.
y_test_pred = xgb.predict(X_test)
print(classification_report(y_test, y_test_pred))

Wrap model with Giskard

To prepare for the vulnerability scan, make sure to wrap your model using Giskard’s Model class. You can choose to either wrap the prediction function (preferred option) or the model object. More details here.

[ ]:
giskard_model = Model(
    model=xgb,
    # A prediction function that encapsulates all the data pre-processing steps and that could be executed with the dataset used by the scan.
    model_type="classification",  # Either regression, classification or text_generation.
    name="breast_cancer_xgboost",  # Optional.
    classification_labels=[0, 1],  # Their order MUST be identical to the prediction_function's output order.
    feature_names=X_test.columns,  # Default: all columns of your dataset.
)

# Validate the model wrapping.
y_test_pred_wrapped = giskard_model.predict(giskard_dataset).raw_prediction
print(classification_report(y_test, y_test_pred_wrapped))

Detect vulnerabilities in your model

Scan your model for vulnerabilities with Giskard

Giskard’s scan allows you to detect vulnerabilities in your model automatically. These include performance biases, unrobustness, data leakage, stochasticity, underconfidence, ethical issues, and more. For detailed information about the scan feature, please refer to our scan documentation.

[ ]:
results = scan(giskard_model, giskard_dataset)
[9]:
display(results)  # in your notebook

Generate comprehensive test suites automatically for your model

Generate test suites from the scan

The objects produced by the scan can be used as fixtures to generate a test suite that integrate all detected vulnerabilities. Test suites allow you to evaluate and validate your model’s performance, ensuring that it behaves as expected on a set of predefined test cases, and to identify any regressions or issues that might arise during development or updates.

[10]:
test_suite = results.generate_test_suite("My first test suite")
test_suite.run()
Executed 'Nominal association (Theil's U) on data slice “`worst concave points` >= 0.144”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309f5b0>, 'threshold': 0.5}:
               Test failed
               Metric: 0.77
                - [TestMessageLevel.INFO] metric = 0.7745014140794255, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`worst radius` >= 17.420”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x142dcc160>, 'threshold': 0.5}:
               Test failed
               Metric: 0.76
                - [TestMessageLevel.INFO] metric = 0.7639160128151123, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`worst perimeter` >= 110.950”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ec4c0>, 'threshold': 0.5}:
               Test failed
               Metric: 0.74
                - [TestMessageLevel.INFO] metric = 0.7427987555404146, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`worst area` >= 885.950”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ed390>, 'threshold': 0.5}:
               Test failed
               Metric: 0.71
                - [TestMessageLevel.INFO] metric = 0.7131111241996619, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`mean concave points` >= 0.053”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430c8f10>, 'threshold': 0.5}:
               Test failed
               Metric: 0.64
                - [TestMessageLevel.INFO] metric = 0.6377395426892722, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`mean perimeter` >= 96.380”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ef880>, 'threshold': 0.5}:
               Test failed
               Metric: 0.62
                - [TestMessageLevel.INFO] metric = 0.6227293846650519, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`mean radius` >= 15.060”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309ecb0>, 'threshold': 0.5}:
               Test failed
               Metric: 0.61
                - [TestMessageLevel.INFO] metric = 0.6087180717056299, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`mean area` >= 697.300”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309ef80>, 'threshold': 0.5}:
               Test failed
               Metric: 0.61
                - [TestMessageLevel.INFO] metric = 0.6087180717056299, threshold = 0.5

Executed 'Nominal association (Theil's U) on data slice “`area error` >= 39.690”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x142e7dc00>, 'threshold': 0.5}:
               Test failed
               Metric: 0.52
                - [TestMessageLevel.INFO] metric = 0.5166070702259753, threshold = 0.5

Executed 'Accuracy on data slice “`worst radius` >= 14.765 AND `worst radius` < 17.625”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309b670>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`mean radius` >= 13.310 AND `mean radius` < 15.005”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309ed10>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`mean perimeter` >= 86.140 AND `mean perimeter` < 98.085”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ca290>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`worst perimeter` >= 96.625 AND `worst perimeter` < 122.350”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430c95d0>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`mean area` >= 518.300 AND `mean area` < 664.350”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ca9e0>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`mean concavity` >= 0.078 AND `mean concavity` < 0.140”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ed4b0>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`mean concave points` >= 0.048 AND `mean concave points` < 0.079”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430ec340>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.8


Executed 'Accuracy on data slice “`worst area` >= 610.200 AND `worst area` < 828.500”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430cb3a0>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.82


Executed 'Accuracy on data slice “`fractal dimension error` < 0.003 AND `fractal dimension error` >= 0.002”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309d6f0>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.83


Executed 'Accuracy on data slice “`worst concavity` >= 0.277 AND `worst concavity` < 0.415”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309fc70>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.83


Executed 'Accuracy on data slice “`compactness error` >= 0.020 AND `compactness error` < 0.030”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x14309db70>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.84


Executed 'Accuracy on data slice “`mean compactness` >= 0.099 AND `mean compactness` < 0.128”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430c8340>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.84


Executed 'Recall on data slice “`concave points error` >= 0.009 AND `concave points error` < 0.015”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430edd20>, 'threshold': 0.9179775280898876}:
               Test failed
               Metric: 0.88


Executed 'Accuracy on data slice “`perimeter error` < 2.151 AND `perimeter error` >= 1.505”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430cbd90>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.89


Executed 'Accuracy on data slice “`area error` < 40.745 AND `area error` >= 19.215”' with arguments {'model': <giskard.models.sklearn.SKLearnModel object at 0x12ce6f670>, 'dataset': <giskard.datasets.base.Dataset object at 0x12cce5ae0>, 'slicing_function': <giskard.slicing.slice.QueryBasedSliceFunction object at 0x1430c8850>, 'threshold': 0.9101398601398601}:
               Test failed
               Metric: 0.89


[10]:
close Test suite failed. To debug your failing test and diagnose the issue, please run the Giskard hub (see documentation)
Test Nominal association (Theil's U) on data slice “`worst concave points` >= 0.144”
Measured Metric = 0.7745 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst concave points` >= 0.144
threshold 0.5
Test Nominal association (Theil's U) on data slice “`worst radius` >= 17.420”
Measured Metric = 0.76392 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst radius` >= 17.420
threshold 0.5
Test Nominal association (Theil's U) on data slice “`worst perimeter` >= 110.950”
Measured Metric = 0.7428 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst perimeter` >= 110.950
threshold 0.5
Test Nominal association (Theil's U) on data slice “`worst area` >= 885.950”
Measured Metric = 0.71311 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst area` >= 885.950
threshold 0.5
Test Nominal association (Theil's U) on data slice “`mean concave points` >= 0.053”
Measured Metric = 0.63774 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean concave points` >= 0.053
threshold 0.5
Test Nominal association (Theil's U) on data slice “`mean perimeter` >= 96.380”
Measured Metric = 0.62273 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean perimeter` >= 96.380
threshold 0.5
Test Nominal association (Theil's U) on data slice “`mean radius` >= 15.060”
Measured Metric = 0.60872 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean radius` >= 15.060
threshold 0.5
Test Nominal association (Theil's U) on data slice “`mean area` >= 697.300”
Measured Metric = 0.60872 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean area` >= 697.300
threshold 0.5
Test Nominal association (Theil's U) on data slice “`area error` >= 39.690”
Measured Metric = 0.51661 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `area error` >= 39.690
threshold 0.5
Test Accuracy on data slice “`worst radius` >= 14.765 AND `worst radius` < 17.625”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst radius` >= 14.765 AND `worst radius` < 17.625
threshold 0.9101398601398601
Test Accuracy on data slice “`mean radius` >= 13.310 AND `mean radius` < 15.005”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean radius` >= 13.310 AND `mean radius` < 15.005
threshold 0.9101398601398601
Test Accuracy on data slice “`mean perimeter` >= 86.140 AND `mean perimeter` < 98.085”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean perimeter` >= 86.140 AND `mean perimeter` < 98.085
threshold 0.9101398601398601
Test Accuracy on data slice “`worst perimeter` >= 96.625 AND `worst perimeter` < 122.350”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst perimeter` >= 96.625 AND `worst perimeter` < 122.350
threshold 0.9101398601398601
Test Accuracy on data slice “`mean area` >= 518.300 AND `mean area` < 664.350”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean area` >= 518.300 AND `mean area` < 664.350
threshold 0.9101398601398601
Test Accuracy on data slice “`mean concavity` >= 0.078 AND `mean concavity` < 0.140”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean concavity` >= 0.078 AND `mean concavity` < 0.140
threshold 0.9101398601398601
Test Accuracy on data slice “`mean concave points` >= 0.048 AND `mean concave points` < 0.079”
Measured Metric = 0.8 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean concave points` >= 0.048 AND `mean concave points` < 0.079
threshold 0.9101398601398601
Test Accuracy on data slice “`worst area` >= 610.200 AND `worst area` < 828.500”
Measured Metric = 0.81818 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst area` >= 610.200 AND `worst area` < 828.500
threshold 0.9101398601398601
Test Accuracy on data slice “`fractal dimension error` < 0.003 AND `fractal dimension error` >= 0.002”
Measured Metric = 0.83333 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `fractal dimension error` < 0.003 AND `fractal dimension error` >= 0.002
threshold 0.9101398601398601
Test Accuracy on data slice “`worst concavity` >= 0.277 AND `worst concavity` < 0.415”
Measured Metric = 0.83333 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `worst concavity` >= 0.277 AND `worst concavity` < 0.415
threshold 0.9101398601398601
Test Accuracy on data slice “`compactness error` >= 0.020 AND `compactness error` < 0.030”
Measured Metric = 0.84375 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `compactness error` >= 0.020 AND `compactness error` < 0.030
threshold 0.9101398601398601
Test Accuracy on data slice “`mean compactness` >= 0.099 AND `mean compactness` < 0.128”
Measured Metric = 0.84375 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `mean compactness` >= 0.099 AND `mean compactness` < 0.128
threshold 0.9101398601398601
Test Recall on data slice “`concave points error` >= 0.009 AND `concave points error` < 0.015”
Measured Metric = 0.875 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `concave points error` >= 0.009 AND `concave points error` < 0.015
threshold 0.9179775280898876
Test Accuracy on data slice “`perimeter error` < 2.151 AND `perimeter error` >= 1.505”
Measured Metric = 0.88571 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `perimeter error` < 2.151 AND `perimeter error` >= 1.505
threshold 0.9101398601398601
Test Accuracy on data slice “`area error` < 40.745 AND `area error` >= 19.215”
Measured Metric = 0.88889 close Failed
model 534fd047-4921-414f-9e34-ca2a918b6822
dataset breast_cancer
slicing_function `area error` < 40.745 AND `area error` >= 19.215
threshold 0.9101398601398601

Customize your suite by loading objects from the Giskard catalog

Customize your suite by loading objects from the Giskard catalog

The Giskard open source catalog will enable to load:

  • Tests such as metamorphic, performance, prediction & data drift, statistical tests, etc

  • Slicing functions such as detectors of toxicity, hate, emotion, etc

  • Transformation functions such as generators of typos, paraphrase, style tune, etc

To create custom tests, refer to this page.

For demo purposes, we will load a simple unit test (test_f1) that checks if the test F1 score is above the given threshold. For more examples of tests and functions, refer to the Giskard catalog.

[ ]:
test_suite.add_test(testing.test_f1(model=giskard_model, dataset=giskard_dataset, threshold=0.7)).run()

Debug and interact with your tests in the Giskard Hub

At this point, you’ve created a test suite that is highly specific to your domain & use-case. Failing tests can be a pain to debug, which is why we encourage you to head over to the Giskard Hub.

Play around with a demo of the Giskard Hub on HuggingFace Spaces using this link.

More than just debugging tests, the Giskard Hub allows you to:

  • Compare models to decide which model to promote

  • Automatically create additional domain-specific tests through our automated model insights feature

  • Share your test results with team members and decision makers

The Giskard Hub can be deployed easily on HuggingFace Spaces.

Here’s a sneak peek of automated model insights on a credit scoring classification model.

CleanShot 2023-09-26 at 18.38.09.png

CleanShot 2023-09-26 at 18.38.50.png

Upload your test suite to the Giskard Hub

The entry point to the Giskard Hub is the upload of your test suite. Uploading the test suite will automatically save the model, dataset, tests, slicing & transformation functions to the Giskard Hub.

[ ]:
# Create a Giskard client after having install the Giskard server (see documentation)
api_key = "<Giskard API key>"  #This can be found in the Settings tab of the Giskard hub
#hf_token = "<Your Giskard Space token>" #If the Giskard Hub is installed on HF Space, this can be found on the Settings tab of the Giskard Hub

client = GiskardClient(
    url="http://localhost:19000",  # Option 1: Use URL of your local Giskard instance.
    # url="<URL of your Giskard hub Space>",  # Option 2: Use URL of your remote HuggingFace space.
    key=api_key,
    # hf_token=hf_token  # Use this token to access a private HF space.
)

project_key = "my_project"
my_project = client.create_project(project_key, "PROJECT_NAME", "DESCRIPTION")

# Upload to the project you just created
test_suite.upload(client, project_key)

Download a test suite from the Giskard Hub

After curating your test suites with additional tests on the Giskard Hub, you can easily download them back into your environment. This allows you to:

  • Check for regressions after training a new model

  • Automate the test suite execution in a CI/CD pipeline

  • Compare several models during the prototyping phase

[ ]:
test_suite_downloaded = Suite.download(client, project_key, suite_id=...)
test_suite_downloaded.run()